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Let M n denote the bivariate box-spline corresponding to the directions (1,0),
(0, 1), (I, 1), each occming with multiplicity n. We determine the critical points of
the polynomials P,,(x) = LIEl:' M,,(j) e'l" n E Z' ~. (·1987 Academic Press. Inc.

In a series of beautiful papers, Schoenberg developed the theory of
univariate cardinal splines [6-8]. A basic result is the positivity of the
Euler-Frobenius polynomials which implies the wellposedness of cardinal
interpolation.

THEOREM 1 [6]. Let M, denote the univariate cardinal B-spline with
support centered at O. The Euler-Frobenius polynomials

P,(x) = L M,(j) eli"
jEZ
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are strictly positive and attain their unique minimum (maximum) at
x=n(mod2n1') (x=0(mod2n1')).

In this note we obtain the bivariate analog of this result for box-splines.
For a set of vectors E = g I ,..., ~,,} with ~ v E ;:r, the box-spline ME is the
functional on Co(lRm) defined by [1]

Equivalently, ME can be defined by its Fourier transform

"
ME(y)= TI S(~vY)

v = 1

(1)

(2)

where S(z):= (2/z) sin(z/2). The latter definition stresses the similarity to
the univariate case. We define the multivariate Euler-Frobenius
polynomials by

(3)
jE Fin

In the bivariate case (m = 2) we proved [3] the following conjecture:
The polynomials PE are strictly positive iff the box-splines M E( . -j), j E 1'm,
are linearZv independent.

If valid in general (m > 2) the conjecture would imply that cardinal inter
polation is well posed if the obvious necessary condition of linear indepen
dence is satisfied. For two variables it was shown in [2] that the box
splines are linearly independent only on the "standard" three-direction
mesh, up to symmetry the vectors in E have to be chosen from the set
{(l,0), (0,1), (I, I)}. While the corresponding grid is very regular, the
analysis of the interpolation problem is complicated. Our results [3,4] are
not as complete as in Schoenberg's univariate theory. E. g. we were not
able to determine the location of the minimum for PE which in general
depends on E. We conjectured that in the symmetric case, when each of the
three vectors in E occurs with multiplicity n, the polynomial P" = P E

attains its minimum at the point (2n/3, 2n/3). In this note we prove this
conjecture and determine all critical points of P".

THEOREM 2. The polynomials P", n E l' +' attain their minima at
± (2n/3, 2n/3) mod 2n1' 2

, their maxima at the points 2n1' 2 and have saddle
points at n1' 2 mod 2n1' 2

. These are the only critical points of P".

Figure I below shows the level curves of P 2 on [n/2, 3n/2] x [ - n, n]
which illustrates the general situation.
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FIGURE 1

The proof of Theorem 2 relies heavily on the symmetries of Pw Let ,r;{

denote the group of 12 linear transformations which leave the mesh
generated by the three directions (1, 0), (0, 1), (1, 1) invariant. This group
is generated by the matrices

(-1 0)° -1 ' ( ° ~ 1)
-1 0'

(4)

which correspond to reflection at the origin and permutation of the direc
tions. The symmetric box-spline M n is invariant under composition with
.st!, i.e.,

A Ed. (5)

Therefore, the corresponding Euler-Frobenius polynomials satisfy

Pn(A *x + 2nj) = Pn(x), (6)

where A * denotes the transpose of A. These relations give much infor
mation about the structure of P w Denote by Vf(u, v):= (Duf(u, v),
DJ(u, v)) the gradient of a function! Differentiating identity (6) we
obtain

(VPn(A*x + 2nj)) A * = VPn(x), (7)
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Let I denote the unit matrix. Identity (7) implies in particular that

11

if (I - A *) x = 2nj. (8)

For A = (-b n C:: l b) E sd it follows from (8) that VP" vanishes at the
points n7L2 and ± (2n/3, 2n/3) + 2n7L 2, respectively. For A = (b - l), (-j n
(? b), L? -b), (-b l), C ?)Esl, the matrices (I-A) have rank one and it
follows from (8) that for k E lL,

(O,I)VP,,(x)=O if (1, 2) x = 2nk,

(1,O)VP,,(x)=O if (2, 1) x = 2nk,

(1, - 1) VP,,( x) = 0 if (1, - 1) x = 2nk,

(1,I)VP,,(x)=O if (1, 1) x = 2nk,
(9)

(2, -1)VP,,(x)=O if (1, 0) x = 2nk,

(1, -2)VP,,(x)=0 if (0, 1) x = 2nk.

The remaining four matrices in .91 give no further information.
Let Q denote the (closed) triangle with vertices (0,0), (n, 0),

(2n/3, 2n/3). The set

Q*:= U AQ,
A E ,ci

which is the convex hull of the six points ± (2n/3, 2n/3), ± (4n/3, - 2n/3),
± (2n/3, - 4n/3), is a fundamental domain, i.e., its translates form an essen
tially disjoint partition of [R2. Therefore, to complete the proof of
Theorem 2, it is sufficient to show that

and that

for xEQ\{(O, 0), (n, 0), (2n/3, 2n/3)} (10)

(11 )

To this end we proof the following estimates (Fig. 2):

(i) DuP,,(u, v)/(2u+v)<0 for (u, v)EQt:= {(u, v): O~v~u,

2u + v ~ 3n/2, u > 0 },

(ii) Du Pn(u,v)/(2n-2u-v)<0 for (U,V)EQ2:={(U,v): 3n/2~

2u + v < 2n, 0 ~ v, u + 2v ~ 2n },

(iii) DvPn(u, v)/v<O for (u, V)EQ 3 := {(u, v): 0<v=2n-2u~n/3}.
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FIGURE 2

Note that. since Pn(u, v) = Pn(u, u), it follows from (ii) that

n/3 :( /' < 2n/3.

For small n the inequalities (i)-(iii) can be verified numerically and we
shall assume in the sequel that n is sufficiently large (n? 5). Using the
Poisson summation formula and (2), we write Pn in the form

Pn(U,v)= L S(u+k)" S(v+/)n S(u+v+k+/)n (12)
(k. /j c .1

where 11:= 2n£,2. For (u, v) E Q and large n, the tcrms with Ikl + III small
dominate in the expression for P n . This fact is crucial for the subsequcnt
estimates.

Proof of (i). We write

DuPn(u,v)=n L auhu
(k./)E .1

(13 )

with

au:=S(u+k)" I S(v+/)n S(u+v+k+/)n J

hu := S'(u + k) S(u + v + k + I) + S(u + k) S'(u + v + k + /).
(14)
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Using the inequalities

1S(w)l, I S'( w)1 :s; min(1, 2/lwl),

13

(15)

-rzw:s; S'(w):S; --hw,

for (u, v) E Q" we obtain the estimates

1
bo,o~ -T2(2u+v),

1 1 (3n) 1bo,o:S; -16 uS(n) -16 (14 + v) S 4 :s; - 8n (214 + v),

/
bk,ll:s; 4,8n (Sin(u/2) + sin((u+ V)/2))
bo,o lu+kllu+v+k+ll 2u+v 2u+v

16n
:s; .

lu+kllu+v+k+l[

For (U,V)EQ, and (k,l)#(O,O), we have

1 I v I 2
lu+kllu+v+k+ll v+l :S;n-.

(16 )

Combining this inequality with (16), we see from the definition of ak,{ and
S that

I
DuP,,(U,V) I "Iaklllbkil--.::-....::.-:.......:...--:. - 1 <: L. -' -'
nao. abo. 0 " A\(O, OJ ao.o bo,o

l
ui" 'I v I" I u+ v I" -, 16n

:S;L u+kl v+l u+v+k+l lu+kllu+v+k+ll

:s;~ I 37[/4 I" 1 I~I"- I I n I" I
n L 3n/4 + k n/2 + l n + k + l .

The last right-hand side is less than 1 for n ~ 5. Therefore, inequality (i)
follows from the second inequality in (16) and the fact that ao,o is positive
on Qt.

Proof of (ii). In expression (13) for D uP" we split the index set A into
the three parts:

A o:= {(k, I): 2k+I+2n=O},

A±:= Uk,l): ±(2k+l+2n»O}.

MOison ·2
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The sets A + and A are related by the bijective mapping

Therefore, we can write DuPf! in the form

DuPt/(u, v)=n 'LGk,lbk,l+n 'L Gk,lbk.1
Ao A 4

where (cf, (14»

b '=b +G_k 1-2n,l bk,I' k,1 G -·k 1-2n.1
k. I

= [S'(u+k) S(u+ v +k + I) + S(u+k) S'(u+ v +k + I)J

+ (t/-1 [S'(u -k-I- 2n) S(u + v -k - 2n)

+ S(u - k -1- 2n) S'(u + v - k - 2n) ]

with

(:= u+k u+v+k+1
u - k - 1- 2n u + v - k - 2n

Observe that for (u, v) E il 2 and (k, I) E A + ,

(17)

and
2n - v - 2u 2k +1+2n

1-(= ,
u - k - 1- 2n u + v - k - 2n

(18 )

Since the numerator in I - ( IS positive, letting A *:={(k, I) E A + :

(k + 1+ n)(k + n) > O}, we have

o~ Ij(~ 1,

(k,l)EA*,

(k,l)EA+ \A*,
(19)

Using the identity

, 2 , p ± q 4(p ± q) , p , q
S(p)S(q)±S'(p)S(q)=-slll-2-- 22 SIll-2 S111 -2' (20)

pq p q

we can simplify the above expressions for bk , I and bk , I and obtain

b = 2sin(u+v/2-n)
'k, I (u + k)(u + v + k + l)

4(2u+v-2n) . u+k , u+v+k+1
-~-,,---------,;:sm-- sm----
(U+k)2 (u+v+k+I)2 2 2

(21 )
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b = 2( -1)/ sin(u + v/2) (1 + (n)
k,/ (u+k)(u+v+k+/)

4( - 1)/ sin(u/2) sin( (u + v)/2)

(U+k)2 (u+v+k+/)2

X [(2u + v + 2k + I) + (n+l(2u + v-2k-I-4n)],

15

(k, I) E A*.

(22)

In the term in square brackets we add and subtract (2u + v - 2k -1- 4n).
Then a direct computation using (18) yields

[ ... ] = (2u + v _ 2n) (2 + (2k + 1+ 2n )(2u + v - 2k -1- 4n) f C). (23)
(u - k -1- 2n)(u + v - k - 2n) v ~ 0

Analogous to case (i) we show that ao,obo.o is the dominant term for the
right-hand side of (17). Indeed,

b ~ _ 0.6 2n - 2u - v
0,0 u(u + v)

for n ~ 5, (24 )

as one checks numerically for n = 5, and therefore has it for n ~ 5, since bo 0

decreases as n increases as we see from (19), (22), and (23). For (u, v) E .Q 2

we have n/3 ~ u, u + v ~ 4n/3 and we obtain from (19)-(24) the estimates

Ibk/I 21 u II u+v I
;:;0'- 0 ~ 0.6 u + k u + v + k +1 '

l
~k./\~3(n+l)(2k+I+2n)l_u_1 \ u+v I,
bo.o 0.6 u+ k u+v+ k +1

(k, l) E A o, (25)

(26 )

For (k, I)EA+ \A* we estimate (-nb k./ in a similar way and obtain

n~5,

I
bk,/l~(n3(n+l)(2k+I+2n)l_u_11 u+v I,
bo,o 0.6 u + k u + v +k +1

For (k, I) = (0, ·-2n) we obtain the sharper estimate

I
be::. -211\ ~0.6 u+ v ,

b 2n-u-v
0,0

(k, I) E A + \A *.

(27)

(28)

numerically for n = 5, hence valid for n:?: 5 since Ibo.ol increases with n.
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Similarly as for case (i), it follows from (In (25)-(28), the definitIon of
" and the inequality

(v/(2n--v»)" ((u+v)/(2n~u-v»)":(L

that

I
DuPn(~, v) -11
nao,obo, () I

2 In I

n
1

Sn
/
6 'Inl 4n/3 I"

:( 0.6 + 0.6 AO(~-2n) n + k Sn/6 + I 4n/3 + k + I

3(n + 1) I n I" I Sn/6 In I 4n/3 I"+ L -- ' (2k+l+2n)
0.6 ,1.\(0,0) n + k Sn/6 + I 4n/3 + k + I

3(n+ 1) I n I" I Sn/6 In I 4n/3 I"+ L (2k + 1+ 2n).
0.6 h,1.' n + k + I Sn/6 + I 2n/3 + k

The right-hand side is less than I for n ~ S and the inequality (ii) follows
from (24) and the fact that ao.o is positive.

Proof of (iii). We have

D"Pn(n - v/2, v) = n L a~, ,b~"
A

with

a~, ,:= Sin - v/2 + k)n 1 S(v + I)" I Sin + v/2 + k + I)" 1

b~, ,:= Sin - v/2 + k) S'(v + I) S(n + v/2 + k + I)

+ S(n - v/2 + k) S(v + I) S'(n + v/2 + k + I).

Note that ao,O = a 2n, O. It can be verified numerically that

C:= - sup (b~, 0 + b' 2n, o)/v ~ 0.1.
0< I' ~ n/3

(29)

(30)

To estimate the remaining terms in (29) we observe from the definition of S
and (IS) that

{
2 }Ib~ ,1:( 2v2 min 1, .

, In-v/2+kllv+llln+v/2+k+ll

Therefore,

l
a' b' I 1 In Inl n/3l

n
l 7n/6 In

a:,~2l: <0.2 n+k n/3+1 7n/6+k+l'
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and we obtain

I
DvPn(n-v/2,v) 11

nao.o(bo,0 + b_ 2rr, 0)

:::;;_1 In In\ n/3lnl 7n/6 In
0.2A\{(0.o~-2rr.O)} n+k n/3+! 7n/6+k+!

17

The right-hand side is less than 1 for n ~ 2 which, together with (30),
implies the inequality (iii).
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