Some Qualitative Properties of Bivariate Euler-Frobenius Polynomials

Carl de Boor
Mathematics Research Center, University of Wisconsin, Madison, Wisconsin 53706, U. S. A.
Klaus Höllig
Department of Computer Science, University of Wisconsin, Madison, Wisconsin 53706, U. S. A.

AND

Sherman Riemenschneider

Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2GI

Communicated by V. Totik
Received September 24, 1984; revised February 18, 1985

DEDICATED TO THE MEMORY OF GÉZA FREUD

Let M_{n} denote the bivariate box-spline corresponding to the directions (1,0), $(0,1),(1,1)$, each occuring with multiplicity n. We determine the critical points of the polynomials $P_{n}(x)=\sum_{j \in Z^{2}} M_{n}(j) e^{i j x}, n \in \mathbb{Z}+\cdot \quad 1987$ Academic Press, Inc.

In a series of beautiful papers, Schoenberg developed the theory of univariate cardinal splines [6-8]. A basic result is the positivity of the Euler-Frobenius polynomials which implies the wellposedness of cardinal interpolation.

Theorem 1 [6]. Let M_{r} denote the univariate cardinal B-spline with support centered at 0 . The Euler-Frobenius polynomials

$$
P_{r}(x)=\sum_{j \in Z} M_{r}(j) e^{i j x}, \quad r \in \mathbb{Z}_{+},
$$

are strictly positive and attain their unique minimum (maximum) at $x=\pi(\bmod 2 \pi \mathbb{Z})(x=0(\bmod 2 \pi \mathbb{Z}))$.

In this note we obtain the bivariate analog of this result for box-splines. For a set of vectors $\Xi=\left\{\xi_{1}, \ldots, \xi_{n}\right\}$ with $\xi_{v} \in \mathbb{Z}^{m}$, the box-spline M_{Ξ} is the functional on $C_{0}\left(\mathbb{R}^{m}\right)$ defined by [1]

$$
\begin{equation*}
M_{\Xi} \phi:=\int_{[-1 / 2,1 / 2]^{n}} \phi\left(\sum_{v=1}^{n} \lambda_{v} \xi_{v}\right) d \hat{\lambda} \tag{1}
\end{equation*}
$$

Equivalently, M_{Ξ} can be defined by its Fourier transform

$$
\begin{equation*}
\hat{M}_{\Xi}(y)=\prod_{v=1}^{n} S\left(\xi_{v} y\right) \tag{2}
\end{equation*}
$$

where $S(z):=(2 / z) \sin (z / 2)$. The latter definition stresses the similarity to the univariate case. We define the multivariate Euler-Frobenius polynomials by

$$
\begin{equation*}
P_{\equiv}(x):=\sum_{j \in \mathbb{Z}^{m}} M_{\equiv}(j) e^{i j x} \tag{3}
\end{equation*}
$$

In the bivariate case $(m=2)$ we proved [3] the following conjecture: The polynomials P_{Ξ} are strictly positive iff the box-splines $M_{\Xi}(\cdot-j), j \in \mathbb{Z}^{m}$, are linearly independent.

If valid in general $(m>2)$ the conjecture would imply that cardinal interpolation is well posed if the obvious necessary condition of linear independence is satisfied. For two variables it was shown in [2] that the boxsplines are linearly independent only on the "standard" three-direction mesh, up to symmetry the vectors in Ξ have to be chosen from the set $\{(1,0),(0,1),(1,1)\}$. While the corresponding grid is very regular, the analysis of the interpolation problem is complicated. Our results [3, 4] are not as complete as in Schoenberg's univariate theory. E. g. we were not able to determine the location of the minimum for P_{Ξ} which in general depends on Ξ. We conjectured that in the symmetric case, when each of the three vectors in Ξ occurs with multiplicity n, the polynomial $P_{n}=P_{\Xi}$ attains its minimum at the point $(2 \pi / 3,2 \pi / 3)$. In this note we prove this conjecture and determine all critical points of P_{n}.

Theorem 2. The polynomials $P_{n}, n \in \mathbb{Z}_{+}$, attain their minima at $\pm(2 \pi / 3,2 \pi / 3) \bmod 2 \pi \mathbb{Z}^{2}$, their maxima at the points $2 \pi \mathbb{Z}^{2}$ and have saddle points at $\pi \mathbb{Z}^{2} \bmod 2 \pi \mathbb{Z}^{2}$. These are the only critical points of P_{n}.

Figure 1 below shows the level curves of P_{2} on $[\pi / 2,3 \pi / 2] \times[-\pi, \pi]$ which illustrates the general situation.

Figure 1

The proof of Theorem 2 relies heavily on the symmetries of P_{n}. Let \mathscr{A} denote the group of 12 linear transformations which leave the mesh generated by the three directions $(1,0),(0,1),(1,1)$ invariant. This group is generated by the matrices

$$
\left(\begin{array}{rr}
-1 & 0 \tag{4}\\
0 & -1
\end{array}\right), \quad\left(\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right), \quad\left(\begin{array}{rr}
1 & 0 \\
1 & -1
\end{array}\right), \quad\left(\begin{array}{rr}
-1 & 1 \\
0 & 1
\end{array}\right)
$$

which correspond to reflection at the origin and permutation of the directions. The symmetric box-spline M_{n} is invariant under composition with \mathscr{A}, i.e.,

$$
\begin{equation*}
M_{n}(A x)=M_{n}(x), \quad A \in \mathscr{A} \tag{5}
\end{equation*}
$$

Therefore, the corresponding Euler-Frobenius polynomials satisfy

$$
\begin{equation*}
P_{n}\left(A^{*} x+2 \pi j\right)=P_{n}(x), \quad A \in \mathscr{A}, j \in \mathbb{Z}^{2} \tag{6}
\end{equation*}
$$

where A^{*} denotes the transpose of A. These relations give much information about the structure of P_{n}. Denote by $\nabla f(u, v):=\left(D_{u} f(u, v)\right.$, $D_{v} f(u, v)$) the gradient of a function f. Differentiating identity (6) we obtain

$$
\begin{equation*}
\left(\nabla P_{n}\left(A^{*} x+2 \pi j\right)\right) A^{*}=\nabla P_{n}(x), \quad A \in \mathscr{A}, j \in \mathbb{Z}^{2} \tag{7}
\end{equation*}
$$

Let I denote the unit matrix. Identity (7) implies in particular that

$$
\begin{equation*}
\nabla P_{n}(x) \in \operatorname{ker}(I-A) \quad \text { if } \quad\left(I-A^{*}\right) x=2 \pi j \tag{8}
\end{equation*}
$$

For $A=\left(\begin{array}{cc}-1 & 0 \\ 0 & \ldots\end{array}\right),\left(\begin{array}{cc}-1 & 1 \\ -1 & 0\end{array}\right) \in \mathscr{A}$ it follows from (8) that ∇P_{n} vanishes at the points $\pi \mathbb{Z}^{2}$ and $\pm(2 \pi / 3,2 \pi / 3)+2 \pi \mathbb{Z}^{2}$, respectively. For $A=\left(\begin{array}{cc}1 & -1 \\ 0 & 1 \\ 1\end{array}\right),\left(\begin{array}{cc}-1 & 0 \\ -1 & 1\end{array}\right)$, $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right),\left(\begin{array}{cc}-1 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right) \in \mathscr{A}$, the matrices $(I-A)$ have rank one and it follows from (8) that for $k \in \mathbb{Z}$,

$$
\begin{array}{rlr}
(0,1) \nabla P_{n}(x)=0 & \text { if } & (1,2) x=2 \pi k, \\
(1,0) \nabla P_{n}(x)=0 & \text { if } & (2,1) x=2 \pi k, \\
(1,-1) \nabla P_{n}(x)=0 & \text { if } & (1,-1) x=2 \pi k \tag{9}\\
(1,1) \nabla P_{n}(x)=0 & \text { if } & (1,1) x=2 \pi k, \\
(2,-1) \nabla P_{n}(x)=0 & \text { if } & (1,0) x=2 \pi k, \\
(1,-2) \nabla P_{n}(x)=0 & \text { if } & (0,1) x=2 \pi k
\end{array}
$$

The remaining four matrices in \mathscr{A} give no further information.
Let Ω denote the (closed) triangle with vertices $(0,0),(\pi, 0)$, $(2 \pi / 3,2 \pi / 3)$. The set

$$
\Omega^{*}:=\bigcup_{A \in, Q} A \Omega
$$

which is the convex hull of the six points $\pm(2 \pi / 3,2 \pi / 3), \pm(4 \pi / 3,-2 \pi / 3)$, $\pm(2 \pi / 3,-4 \pi / 3)$, is a fundamental domain, i.e., its translates form an essentially disjoint partition of \mathbb{R}^{2}. Therefore, to complete the proof of Theorem 2, it is sufficient to show that

$$
\begin{equation*}
\nabla P_{n}(x) \neq 0 \quad \text { for } \quad x \in \Omega \backslash\{(0,0),(\pi, 0),(2 \pi / 3,2 \pi / 3)\} \tag{10}
\end{equation*}
$$

and that

$$
\begin{equation*}
P_{n}(2 \pi / 3,2 \pi / 3)<P_{n}(\pi, 0)<P_{n}(0,0) . \tag{11}
\end{equation*}
$$

To this end we proof the following estimates (Fig. 2):
(i) $D_{u} P_{n}(u, v) /(2 u+v)<0 \quad$ for $\quad(u, v) \in \Omega_{1}:=\{(u, v): \quad 0 \leqslant v \leqslant u$, $2 u+v \leqslant 3 \pi / 2, u>0\}$,
(ii) $D_{u} P_{n}(u, v) /(2 \pi-2 u-v)<0 \quad$ for $\quad(u, v) \in \Omega_{2}:=\{(u, v): 3 \pi / 2 \leqslant$ $2 u+v<2 \pi, 0 \leqslant v, u+2 v \leqslant 2 \pi\}$,
(iii) $D_{v} P_{n}(u, v) / v<0$ for $(u, v) \in \Omega_{3}:=\{(u, v): 0<v=2 \pi-2 u \leqslant \pi / 3\}$.

Figure 2

Note that, since $P_{n}(u, v)=P_{n}(v, u)$, it follows from (ii) that

$$
D_{v} P_{n}(\pi-v / 2, v) /(\pi-3 v / 2)<0, \quad \pi / 3 \leqslant v<2 \pi / 3 .
$$

For small n the inequalities (i)-(iii) can be verified numerically and we shall assume in the sequel that n is sufficiently large ($n \geqslant 5$). Using the Poisson summation formula and (2), we write P_{n} in the form

$$
\begin{equation*}
P_{n}(u, v)=\sum_{(k, l) \in, A} S(u+k)^{n} S(v+l)^{n} S(u+v+k+l)^{n} \tag{12}
\end{equation*}
$$

where $A:=2 \pi \mathbb{Z}^{2}$. For $(u, v) \in \Omega$ and large n, the terms with $|k|+|l|$ small dominate in the expression for P_{n}. This fact is crucial for the subsequent estimates.

Proof of (i). We write

$$
\begin{equation*}
D_{u} P_{n}(u, v)=n \sum_{\{k, l) \in A} a_{k, 1} b_{k .1} \tag{13}
\end{equation*}
$$

with

$$
\begin{align*}
& a_{k, l}:=S(u+k)^{n} \quad{ }^{1} S(v+l)^{n} S(u+v+k+l)^{n} \tag{14}\\
& b_{k, l}:=S^{\prime}(u+k) S(u+v+k+l)+S(u+k) S^{\prime}(u+v+k+l)
\end{align*}
$$

Using the inequalities

$$
\begin{gather*}
|S(w)|,\left|S^{\prime}(w)\right| \leqslant \min (1,2 /|w|), \tag{15}\\
-\frac{1}{12} w \leqslant S^{\prime}(w) \leqslant-\frac{1}{16} w, \quad 0 \leqslant w \leqslant \pi,
\end{gather*}
$$

for $(u, v) \in \Omega_{1}$, we obtain the estimates

$$
\begin{align*}
b_{0,0} & \geqslant-\frac{1}{12}(2 u+v), \\
b_{0,0} & \leqslant-\frac{1}{16} u S(\pi)-\frac{1}{16}(u+v) S\left(\frac{3 \pi}{4}\right) \leqslant-\frac{1}{8 \pi}(2 u+v), \\
\left|\frac{b_{k, l}}{b_{0,0} \mid}\right| & \leqslant \frac{4 \cdot 8 \pi}{|u+k||u+v+k+l|}\left(\frac{\sin (u / 2)}{2 u+v}+\frac{\sin ((u+v) / 2)}{2 u+v}\right) \tag{16}\\
& \leqslant \frac{16 \pi}{|u+k||u+v+k+l|} .
\end{align*}
$$

For $(u, v) \in \Omega_{1}$ and $(k, l) \neq(0,0)$, we have

$$
\frac{1}{|u+k||u+v+k+l|}\left|\frac{v}{v+l}\right| \leqslant \pi^{-2} .
$$

Combining this inequality with (16), we see from the definition of $a_{k, l}$ and S that

$$
\begin{aligned}
\left|\frac{D_{u} P_{n}(u, v)}{n a_{0,0} b_{0,0}}-1\right| & \leqslant \sum_{1(00.0)}\left|\frac{a_{k, l}}{a_{0,0}}\right|\left|\frac{b_{k, l}}{b_{0,0}}\right| \\
& \leqslant\left.\sum\left|\frac{u}{u+k}\right|^{n}| | \frac{v}{v+l}\right|^{n}\left|\frac{u+v}{u+v+k+l}\right|^{n-1} \frac{16 \pi}{|u+k||u+v+k+l|} \\
& \leqslant \frac{16}{\pi} \sum\left|\frac{3 \pi / 4}{3 \pi / 4+k}\right|^{n-1}\left|\frac{\pi / 2}{\pi / 2+l}\right|^{n-1}\left|\frac{\pi}{\pi+k+l}\right|^{n-1} .
\end{aligned}
$$

The last right-hand side is less than 1 for $n \geqslant 5$. Therefore, inequality (i) follows from the second inequality in (16) and the fact that $a_{0,0}$ is positive on Ω_{1}.

Proof of (ii). In expression (13) for $D_{u} P_{n}$ we split the index set A into the three parts:

$$
\begin{aligned}
\Lambda_{0} & :=\{(k, l): 2 k+l+2 \pi=0\}, \\
\Lambda_{ \pm} & :=\{(k, l): \pm(2 k+l+2 \pi)>0\} .
\end{aligned}
$$

The sets Λ_{+}and A are related by the bijective mapping

$$
(k, l) \in A_{+} \leftrightarrow\left(k^{\prime}, l^{\prime}\right)=(-k-l-2 \pi, l) \in A .
$$

Therefore, we can write $D_{u} P_{n}$ in the form

$$
\begin{equation*}
D_{u} P_{n}(u, v)=n \sum_{\Lambda_{0}} a_{k, l} b_{k, l}+n \sum_{A_{+}} a_{k, l} \widetilde{b}_{k, l} \tag{17}
\end{equation*}
$$

where (cf. (14))

$$
\begin{aligned}
\tilde{b}_{k, l}:= & b_{k, l}+\frac{a_{-k \cdots l-2 \pi, l}}{a_{k, l}} b_{-k-l-2 \pi, l} \\
= & {\left[S^{\prime}(u+k) S(u+v+k+l)+S(u+k) S^{\prime}(u+v+k+l)\right] } \\
& +\zeta^{n-1}\left[S^{\prime}(u-k-l-2 \pi) S(u+v-k-2 \pi)\right. \\
& \left.\quad+S(u-k-l-2 \pi) S^{\prime}(u+v-k-2 \pi)\right]
\end{aligned}
$$

with

$$
\zeta:=\frac{u+k}{u-k-l-2 \pi} \frac{u+v+k+l}{u+v-k-2 \pi}
$$

Observe that for $(u, v) \in \Omega_{2}$ and $(k, l) \in A_{+}$,

$$
\begin{equation*}
0 \leqslant \zeta \quad \text { and } \quad 1-\zeta=\frac{2 \pi-v-2 u}{u-k-l-2 \pi} \frac{2 k+l+2 \pi}{u+v-k-2 \pi} \tag{18}
\end{equation*}
$$

Since the numerator in $1-\zeta$ is positive, letting $A_{*}:=\left\{(k, l) \in A_{+}\right.$: $(k+l+\pi)(k+\pi)>0\}$, we have

$$
\begin{array}{ll}
0 \leqslant \zeta \leqslant 1, & (k, l) \in A_{*} \tag{19}\\
0 \leqslant 1 / \zeta \leqslant 1, & (k, l) \in A_{+} \backslash A_{*}
\end{array}
$$

Using the identity

$$
\begin{equation*}
S(p) S^{\prime}(q) \pm S^{\prime}(p) S(q)=\frac{2}{p q} \sin \frac{p \pm q}{2}-\frac{4(p \pm q)}{p^{2} q^{2}} \sin \frac{p}{2} \sin \frac{q}{2} \tag{20}
\end{equation*}
$$

we can simplify the above expressions for $b_{k, l}$ and $\tilde{b}_{k, /}$ and obtain

$$
\begin{align*}
b_{k, l}= & \frac{2 \sin (u+v / 2-\pi)}{(u+k)(u+v+k+l)} \\
& -\frac{4(2 u+v-2 \pi)}{(u+k)^{2}(u+v+k+l)^{2}} \sin \frac{u+k}{2} \sin \frac{u+v+k+l}{2}, \quad(k, l) \in A_{0} \tag{21}
\end{align*}
$$

$$
\begin{align*}
\tilde{b}_{k, l}= & \frac{2(-1)^{l} \sin (u+v / 2)}{(u+k)(u+v+k+l)}\left(1+\zeta^{n}\right) \\
& -\frac{4(-1)^{l} \sin (u / 2) \sin ((u+v) / 2)}{(u+k)^{2}(u+v+k+l)^{2}} \\
& \times\left[(2 u+v+2 k+l)+\zeta^{n+1}(2 u+v-2 k-l-4 \pi)\right], \quad(k, l) \in \Lambda_{*} . \tag{22}
\end{align*}
$$

In the term in square brackets we add and subtract $(2 u+v-2 k-l-4 \pi)$. Then a direct computation using (18) yields

$$
\begin{equation*}
[\cdots]=(2 u+v-2 \pi)\left(2+\frac{(2 k+l+2 \pi)(2 u+v-2 k-l-4 \pi)}{(u-k-l-2 \pi)(u+v-k-2 \pi)} \sum_{v=0}^{n} \zeta^{v}\right) \tag{23}
\end{equation*}
$$

Analogous to case (i) we show that $a_{0,0} \tilde{b}_{0,0}$ is the dominant term for the right-hand side of (17). Indeed,

$$
\begin{equation*}
\tilde{b}_{0,0} \leqslant-0.6 \frac{2 \pi-2 u-v}{u(u+v)} \quad \text { for } \quad n \geqslant 5 \tag{24}
\end{equation*}
$$

as one checks numerically for $n=5$, and therefore has it for $n \geqslant 5$, since $\widetilde{b}_{0,0}$ decreases as n increases as we see from (19), (22), and (23). For ($u, v) \in \Omega_{2}$ we have $\pi / 3 \leqslant u, u+v \leqslant 4 \pi / 3$ and we obtain from (19)-(24) the estimates

$$
\begin{array}{ll}
\left|\frac{b_{k, l}}{\tilde{b}_{0,0}}\right| \leqslant \frac{2}{0.6}\left|\frac{u}{u+k}\right|\left|\frac{u+v}{u+v+k+l}\right|, & (k, l) \in \Lambda_{0}, \\
\left|\frac{\tilde{b}_{k, l}}{\tilde{b}_{0,0}}\right| \leqslant \frac{3(n+1)(2 k+l+2 \pi)}{0.6}\left|\frac{u}{u+k}\right|\left|\frac{u+v}{u+v+k+l}\right|, & (k, l) \in \Lambda_{*} .
\end{array}
$$

For $(k, l) \in \Lambda_{+} \backslash \Lambda_{*}$ we estimate $\zeta^{-n} \tilde{b}_{k, l}$ in a similar way and obtain

$$
\begin{equation*}
\left|\frac{\tilde{b}_{k, l}}{\tilde{b}_{0,0}}\right| \leqslant \zeta^{n} \frac{3(n+1)(2 k+l+2 \pi)}{0.6}\left|\frac{u}{u+k}\right|\left|\frac{u+v}{u+v+k+l}\right|, \quad(k, l) \in \Lambda_{+} \backslash \Lambda_{*} . \tag{27}
\end{equation*}
$$

For $(k, l)=(0,-2 \pi)$ we obtain the sharper estimate

$$
\begin{equation*}
\left|\frac{b_{0,-2 \pi}}{\tilde{b}_{0,0}}\right| \leqslant 0.6 \frac{u+v}{2 \pi-u-v}, \quad n \geqslant 5 \tag{28}
\end{equation*}
$$

numerically for $n=5$, hence valid for $n \geqslant 5$ since $\left|\vec{b}_{0,0}\right|$ increases with n.

Similarly as for case (i), it follows from (17), (25)-(28), the definition of ζ, and the inequality

$$
(v /(2 \pi-v))^{n}((u+v) /(2 \pi-u-v))^{n} \leqslant 1, \quad(u, v) \in \Omega_{2},
$$

that

$$
\begin{aligned}
& \left\lvert\, \frac{D_{u} P_{n}(u, v)}{n a_{0,0} \tilde{b}_{0,0}}-1\right. \\
& \quad \leqslant \\
& \quad 0.6+\frac{2}{0.6} \sum_{A 0,(0,-2 \pi)}\left|\frac{\pi}{\pi+k}\right|^{n}\left|\frac{5 \pi / 6}{5 \pi / 6+l}\right|^{n}\left|\frac{4 \pi / 3}{4 \pi / 3+k+l}\right|^{n} \\
& \quad+\frac{3(n+1)}{0.6} \sum_{A_{*}(0,0)}\left|\frac{\pi}{\pi+k}\right|^{n}\left|\frac{5 \pi / 6}{5 \pi / 6+l}\right|^{n}\left|\frac{4 \pi / 3}{4 \pi / 3+k+l}\right|^{n}(2 k+l+2 \pi) \\
& \quad+\frac{3(n+1)}{0.6} \sum_{A_{+1}+M_{*}}\left|\frac{\pi}{\pi+k+l}\right|^{n}\left|\frac{5 \pi / 6}{5 \pi / 6+l}\right|^{n}\left|\frac{4 \pi / 3}{2 \pi / 3+k}\right|^{n}(2 k+l+2 \pi)
\end{aligned}
$$

The right-hand side is less than 1 for $n \geqslant 5$ and the inequality (ii) follows from (24) and the fact that $a_{0,0}$ is positive.

Proof of (iii). We have

$$
\begin{equation*}
D_{v} P_{n}(\pi-v / 2, v)=n \sum_{A} a_{k, l}^{\prime} b_{k, l}^{\prime} \tag{29}
\end{equation*}
$$

with

$$
\begin{aligned}
a_{k, l}^{\prime}:= & S(\pi-v / 2+k)^{n-1} S(v+l)^{n-1} S(\pi+v / 2+k+l)^{n} \cdot 1 \\
b_{k, l}^{\prime}:= & S(\pi-v / 2+k) S^{\prime}(v+l) S(\pi+v / 2+k+l) \\
& +S(\pi-v / 2+k) S(v+l) S^{\prime}(\pi+v / 2+k+l) .
\end{aligned}
$$

Note that $a_{0,0}=a_{2 \pi, 0}$. It can be verified numerically that

$$
\begin{equation*}
C:=-\sup _{0<v \leqslant \pi / 3}\left(b_{0,0}^{\prime}+b_{-2 \pi, 0}^{\prime}\right) / v \geqslant 0.1 . \tag{30}
\end{equation*}
$$

To estimate the remaining terms in (29) we observe from the definition of S and (15) that

$$
\left|b_{k, l}^{\prime}\right| \leqslant 2 v^{2} \min \left\{1, \frac{2}{|\pi-v / 2+k||v+l||\pi+v / 2+k+l|}\right\} .
$$

Therefore,

$$
\left|\frac{a_{k, l}^{\prime} b_{k, l}^{\prime}}{a_{0,0}^{\prime} C v}\right| \leqslant \frac{1}{0.2}\left|\frac{\pi}{\pi+k}\right|^{n}\left|\frac{\pi / 3}{\pi / 3+l}\right|^{n}\left|\frac{7 \pi / 6}{7 \pi / 6+k+l}\right|^{n},
$$

and we obtain

$$
\begin{aligned}
& \left|\frac{D_{v} P_{n}(\pi-v / 2, v)}{n a_{0,0}\left(b_{0,0}+b_{-2 \pi, 0}\right)}-1\right| \\
& \quad \leqslant \frac{1}{0.2} \sum_{A \backslash\{(0,0),(-2 \pi, 0)\}}\left|\frac{\pi}{\pi+k}\right|^{n}\left|\frac{\pi / 3}{\pi / 3+l}\right|^{n}\left|\frac{7 \pi / 6}{7 \pi / 6+k+l}\right|^{n}
\end{aligned}
$$

The right-hand side is less than 1 for $n \geqslant 2$ which, together with (30), implies the inequality (iii).

References

1. C. de Boor and K. Höllig, B-splines from parallelepipeds, J. Anal. Math. 42 (1983), 99-115.
2. C. de Boor and K. Höllig, Bivariate box splines and smooth pp functions on a threedirection mesh, J. Comput. Appl. Math. 9 (1983), 13-28.
3. C. de Boor, K. Höllig, and S. D. Riemenschneider, Bivariate Cardinal Interpolation by Splines on a Three Direction Mesh, Illinois J. Math. 29 (1985), 533-566.
4. C. de Boor, K. Höllig, and S. D. Riemenschneider, Convergence of bivariate cardinal interpolation, Constr. Approx. 1 (1985), 183-193.
5. F. B. Richards and I. J. Schoenberg, Notes on spline functions. IV. A cardinal spline analogue of the theorem of the brothers Markov, Israel J. Math. 16 (1973), 94-102.
6. I. J. Schoenberg, Contribution to data smoothing, Quart. Appl. Math. 4 (1946), 45-99, 112-141.
7. I. J. Schoenberg, Notes on spline functions. III. On the convergence of the interpolating cardinal splines as their degree tends to infinity, Israel J. Math. 16 (1973), 87-93.
8. I. J. Schoenberg, "Cardinal Spline Interpolation," Soc. Indus. Appl. Math., Philadelphia, 1973.
